Transformer-Evolution-Paper
  • README
  • 数学符号
  • Act
    • A survey on recently proposed activation functions for Deep Learning
  • Arch
    • Supplementary Material Implementation and Experiments for GAU-based Model
    • MetaFormer is Actually What You Need for Vision
    • Deeper vs Wider A Revisit of Transformer Configuration
    • Perceiver General Perception with Iterative Attention
    • General-purpose, long-context autoregressive modeling with Perceiver AR
    • Hierarchical Transformers Are More Efficient Language Models
    • Branchformer: Parallel MLP-Attention Architectures to Capture Local and Global Context for Speech Recognition and Understanding
    • Generalization through Memorization: Nearest Neighbor Language Models
  • FFN
    • Large Memory Layers with Product Keys
    • Transformer Feed-Forward Layers Are Key-Value Memories
    • GLU Variants Improve Transformer
    • Simple Recurrence Improves Masked Language Models
    • Pay Attention to MLPs
    • S2-MLP Spatial-Shift MLP Architecture for Vision
    • S2-MLPv2 Improved Spatial-Shift MLP Architecture for Vision
    • HyperMixer An MLP-based Green AI Alternative to Transformers
    • DeFINE: DEep Factorized INput Token Embeddings for Neural Sequence Modeling & DeLighT: Deep and Light-weight Transformer
    • When Shift Operation Meets Vision Transformer: An Extremely Simple Alternative to Attention Mechanism
    • Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?
  • Head
    • Multi-Head Attention Collaborate Instead of Concatenate
    • Fast Transformer Decoding: One Write-Head is All You Need
  • Memory
    • Compressive Transformers for Long-Range Sequence Modelling
    • Memformer The Memory-Augmented Transformer
    • Memory Transformer
    • Do Transformers Need Deep Long-Range Memory
    • LaMemo Language Modeling with Look-Ahead Memory
    • GMAT Global Memory Augmentation for Transformers
    • Block-Recurrent Transformers
    • Augmenting Self-attention with Persistent Memory
    • Recurrent Memory Transformer
    • Memorizing Transformers
    • Scaling Transformer to 1M tokens and beyond with RMT
    • Adapting Language Models to Compress Contexts
  • MHA
    • FFT
      • Fourier Neural Operator for Parametric Partial Differential Equations
      • Global Filter Networks for Image Classification
      • Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers
      • FNet: Mixing Tokens with Fourier Transforms
    • LocalGlobal
      • CrossFormer: A Versatile Vision Transformer Hinging on Cross-scale Attention
      • Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding
      • Neighborhood Attention Transformer
      • FMMformer: Efficient and Flexible Transformer via Decomposed Near-field and Far-field Attention
      • Adaptive Attention Span in Transformers
      • CoLT5: Faster Long-Range Transformers with Conditional Computation
    • MatrixMethod
      • Skyformer Remodel Self-Attention with Gaussian Kernel and Nyström Method
      • Is Attention Better Than Matrix Decomposition
    • RightProduct
      • Kronecker Attention Networks
      • An Attention Free Transformer
      • Transformer with Fourier Integral Attentions
      • Linear Complexity Randomized Self-attention Mechanism
      • UFO-ViT: High Performance Linear Vision Transformer without Softmax
      • XCiT: Cross-Covariance Image Transformers
      • SimpleTRON: Simple Transformer with O(N) Complexity
      • A Dot Product Attention Free Transformer
      • On Learning the Transformer Kernel
      • Momentum Transformer: Closing the Performance Gap Between Self-attention and Its Linearization
    • SparseOrLowRank
      • Explicit Sparse Transformer: Concentrated Attention Through Explicit Selection
      • Scatterbrain: Unifying Sparse and Low-rank Attention Approximation
      • Sparse Factorization of Large Square Matrices
      • Blockwise Self-Attention for Long Document Understanding
      • H-Transformer-1D: Fast One-Dimensional Hierarchical Attention for Sequences
      • ChunkFormer: Learning Long Time Series with Multi-stage Chunked Transformer
      • Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting
      • Fast Transformers with Clustered Attention
      • Long-Short Transformer: Efficient Transformers for Language and Vision
      • LongT5: Efficient Text-To-Text Transformer for Long Sequences
      • Luna: Linear Unified Nested Attention
      • Memory-efficient Transformers via Top-k Attention
      • Separable Self-attention for Mobile Vision Transformers
      • Simple Local Attentions Remain Competitive for Long-Context Tasks
      • You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling
    • Others
      • Synthesizer: Rethinking Self-Attention in Transformer Models
      • Transformer Dissection: A Unified Understanding of Transformer's Attention via the Lens of Kern
      • Combiner Full Attention Transformer with Sparse Computation Cost
      • Ripple Attention for Visual Perception with Sub-quadratic Complexity
      • Sinkformers: Transformers with Doubly Stochastic Attention
      • SOFT: Softmax-free Transformer with Linear Complexity
      • Value-aware Approximate Attention
      • EL-Attention: Memory Efficient Lossless Attention for Generation
      • Flowformer: Linearizing Transformers with Conservation Flows
      • ETSformer: Exponential Smoothing Transformers for Time-series Forecasting
      • IGLOO: Slicing the Features Space to Represent Sequences
      • Swin Transformer V2: Scaling Up Capacity and Resolution
      • Skip-Attention: Improving Vision Transformers by Paying Less Attention
  • Normalize_And_Residual
    • ReZero is All You Need Fast Convergence at Large Depth
    • Batch Normalization Biases Residual Blocks Towards the Identity Function in Deep Networks
    • Improving Deep Transformer with Depth-Scaled Initialization and Merged Attention
    • RealFormer Transformer Likes Residual Attention
    • On Layer Normalizations and Residual Connections in Transformers
    • Transformers without Tears: Improving the Normalization of Self-Attention
    • Query-Key Normalization for Transformers
    • Understanding the difficulty of training transformers
  • Pe
    • A Simple and Effective Positional Encoding for Transformers
    • DeBERTa Decoding-enhanced BERT with Disentangled Attention
    • DecBERT Enhancing the Language Understanding of BERT with Causal Attention Masks
    • Encoding word order in complex embeddings
    • Improve Transformer Models with Better Relative Position Embeddings
    • KERPLE Kernelized Relative Positional Embedding for Length Extrapolation
    • PermuteFormer Efficient Relative Position Encoding for Long Sequences
    • Rethinking Positional Encoding in Language Pre-training
    • Transformer-XL Attentive Language Models Beyond a Fixed-Length Context
    • Translational Equivariance in Kernelizable Attention
    • Transformer Language Models without Positional Encodings Still Learn Positional Information
    • Stable, Fast and Accurate: Kernelized Attention with Relative Positional Encoding
    • Randomized Positional Encodings Boost Length Generalization of Transformers
  • Pretrain
    • XLNet Generalized Autoregressive Pretraining for Language Understanding
    • Transcormer Transformer for Sentence Scoring with Sliding Language Modeling
    • Optimus Organizing Sentences via Pre-trained Modeling of a Latent Space
    • ELECTRA Pre-training Text Encoders as Discriminators Rather Than Generators
    • Cramming: Training a Language Model on a Single GPU in One Day
  • Softmax
    • Transformer with a Mixture of Gaussian Keys
    • Normalized Attention Without Probability Cage
  • Others
    • Accelerating Neural Transformer via an Average Attention Network
    • Do Transformer Modifications Transfer Across Implementations and Applications?
    • Object-Centric Learning with Slot Attention
    • Do Transformer Modifications Transfer Across Implementations and Applications?
    • Why self-attention is Natural for Sequence-to-Sequence Problems? A Perspective from Symmetries
  • LongConv
    • Legendre Memory Units: Continuous-Time Representation in Recurrent Neural Networks
    • Parallelizing Legendre Memory Unit Training
    • Simplified State Space Layers for Sequence Modeling
    • Pretraining Without Attention
    • What Makes Convolutional Models Great on Long Sequence Modeling?
    • Hungry Hungry Hippos: Towards Language Modeling with State Space Models
    • Hyena Hierarchy: Towards Larger Convolutional Language Models
    • RWKV
    • Simple Hardware-Efficient Long Convolutions for Sequence Modeling
    • Time-aware large kernel convolutions
    • Resurrecting Recurrent Neural Networks for Long Sequences
    • CKConv: Continuous Kernel Convolution For Sequential Data
    • FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes
    • Towards a General Purpose CNN for Long Range Dependencies in ND
  • Rnn
    • When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute
    • Linear Transformers Are Secretly Fast Weight Programmers
    • Going Beyond Linear Transformers with Recurrent Fast Weight Programmers
    • Parallelizing Linear Recurrent Neural Nets Over Sequence Length
    • Quasi-recurrent neural networks
  • CrossAttention
    • Neural Machine Translation in Linear Time
  • Inference
    • Extrapolation
      • Parallel Context Windows for Large Language Models
      • Structured Prompting: Scaling In-Context Learning to 1,000 Examples
      • Naive Bayes-based Context Extension
  • Peft
    • Parameter-Efficient Fine-Tuning without Introducing New Latency
    • Make Your Pre-trained Model Reversible: From Parameter to Memory Efficient Fine-Tuning
  • LLM
    • LLM Details Summary
    • What Language Model to Train if You Have One Million GPU Hours?
Powered by GitBook
On this page
  • 整体思路以及计算方式
  • 时间复杂度
  • 训练以及loss
  • 代码
  • 实验以及适用场景
  • 细节
  • 简评
  1. Pe

Translational Equivariance in Kernelizable Attention

PreviousTransformer-XL Attentive Language Models Beyond a Fixed-Length ContextNextTransformer Language Models without Positional Encodings Still Learn Positional Information

Last updated 2 years ago

论文地址:

整体思路以及计算方式

论文讨论的是在线性Attention中添加相对位置编码信息,整体思路如下。

首先回顾Attention计算方式,其中ei\mathbf e_iei​是word embedding,ui\mathbf u_iui​是position embedding:

A~i,j=⟨(ei+ui)Wq,(ej+uj)Wk⟩=(ei+ui)WqWk⊤(ej+uj)⊤=eiWqWk⊤ej⊤+eiWqWk⊤uj⊤+uiWqWk⊤ej⊤+uiWqWk⊤uj⊤\begin{aligned} \tilde{\mathbf{A}}_{i, j} &=\left\langle\left(\mathbf e_{i}+\mathbf u_{i}\right) \mathbf {W}_{q},\left(\mathbf e_{j}+\mathbf u_{j}\right) \mathbf {W}_{k}\right\rangle=\left(\mathbf e_{i}+\mathbf u_{i}\right) \mathbf {W}_{q} \mathbf {W}_{k}^{\top}\left(\mathbf e_{j}+\mathbf u_{j}\right)^{\top} \\ &=\mathbf e_{i} \mathbf {W}_{q} \mathbf {W}_{k}^{\top}\mathbf e_{j}^{\top}+\mathbf e_{i} \mathbf {W}_{q} \mathbf {W}_{k}^{\top} \mathbf u_{j}^{\top}+\mathbf u_{i} \mathbf {W}_{q} \mathbf {W}_{k}^{\top} \mathbf e_{j}^{\top}+\mathbf u_{i} \mathbf {W}_{q} \mathbf {W}_{k}^{\top} \mathbf u_{j}^{\top} \end{aligned}A~i,j​​=⟨(ei​+ui​)Wq​,(ej​+uj​)Wk​⟩=(ei​+ui​)Wq​Wk⊤​(ej​+uj​)⊤=ei​Wq​Wk⊤​ej⊤​+ei​Wq​Wk⊤​uj⊤​+ui​Wq​Wk⊤​ej⊤​+ui​Wq​Wk⊤​uj⊤​​

论文的思路是对该计算方式进行重构,并且仍然能保持线性Attention的性质。

方案1:

A~i,j=eiWqWk⊤ej⊤+uiWqWk⊤uj⊤\begin{aligned} \tilde{\mathbf{A}}_{i, j} &=\mathbf e_{i} \mathbf {W}_{q} \mathbf {W}_{k}^{\top}\mathbf e_{j}^{\top} +\mathbf u_{i} \mathbf {W}_{q} \mathbf {W}_{k}^{\top}\mathbf u_{j}^{\top} \end{aligned}A~i,j​​=ei​Wq​Wk⊤​ej⊤​+ui​Wq​Wk⊤​uj⊤​​

其中:

Wq∗=blockdiag⁡([α1β1−β1α1],…,[αmβm−βmαm])Wk∗=I2m\begin{aligned} \mathbf {W}_{q}^{*} &=\operatorname{blockdiag}\left(\left[\begin{array}{cc} \alpha_{1} & \beta_{1} \\ -\beta_{1} & \alpha_{1} \end{array}\right], \ldots,\left[\begin{array}{cc} \alpha_{m} & \beta_{m} \\ -\beta_{m} & \alpha_{m} \end{array}\right]\right)\\ \mathbf {W}_{k}^{*}&=\mathbb{I}_{2 m} \end{aligned}Wq∗​Wk∗​​=blockdiag([α1​−β1​​β1​α1​​],…,[αm​−βm​​βm​αm​​])=I2m​​

该方案的特点是,如果位置编码的形式为:

ux=ϕ(x)=[sin⁡(ω1x),cos⁡(ω1x),…,sin⁡(ωmx),cos⁡(ωmx)]u_x =\phi(x)=\left[\sin \left(\omega_{1} x\right), \cos \left(\omega_{1} x\right), \ldots, \sin \left(\omega_{m} x\right), \cos \left(\omega_{m} x\right)\right]ux​=ϕ(x)=[sin(ω1​x),cos(ω1​x),…,sin(ωm​x),cos(ωm​x)]

那么满足如下性质:

⟨ui−uWq,uj−uWk⟩=⟨uiWq,ujWk⟩\left\langle \mathbf u_{i-u} \mathbf {W}_{q},\mathbf u_{j-u} \mathbf {W}_{k}\right\rangle =\left\langle \mathbf u_{i} \mathbf {W}_{q},\mathbf u_{j} \mathbf {W}_{k}\right\rangle⟨ui−u​Wq​,uj−u​Wk​⟩=⟨ui​Wq​,uj​Wk​⟩

方案2:

A~ij=eiWq(ejWk+aij)⊤=eiWqWk⊤ej⊤+eiWqaij⊤\tilde{\mathbf{A}}_{i j}=\mathbf e_{i} \mathbf{W}_{q}\left(\mathbf e_{j} \mathbf{W}_{k}+{a}_{i j}\right)^{\top}=\mathbf e_{i} \mathbf{W}_{q} \mathbf{W}_{k}^{\top} \mathbf e_{j}^{\top}+\mathbf e_{i} \mathbf{W}_{q} \mathbf {a}_{i j}^{\top}A~ij​=ei​Wq​(ej​Wk​+aij​)⊤=ei​Wq​Wk⊤​ej⊤​+ei​Wq​aij⊤​

其中

aij=wclip⁡(j−i,k)clip⁡(x,k)=max⁡(−k,min⁡(k,x))\begin{aligned} \mathbf {a}_{i j} &=\mathbf{w}_{\operatorname{clip}(j-i, k)} \\ \operatorname{clip}(x, k) &=\max (-k, \min (k, x)) \end{aligned}aij​clip(x,k)​=wclip(j−i,k)​=max(−k,min(k,x))​

clip函数的含义是将输入截断至[−k,k][-k, k][−k,k]之间。

如果使用普通的实现方式,那么时间复杂度为O(L2d)O(L^2 d)O(L2d),但是注意到:

∑j=1L⟨qi′,aij′⟩vj=⟨qi′,wk′⟩∑j=1Lvj+∑m⟨qi′,aim′⟩\sum_{j=1}^{L}\left\langle\mathbf{q}_{i}^{\prime}, \mathbf{a}_{i j}^{\prime}\right\rangle \mathbf{v}_{j}=\left\langle\mathbf{q}_{i}^{\prime}, \mathbf{w}_{k}^{\prime}\right\rangle \sum_{j=1}^{L} \mathbf{v}_{j}+\sum_{m}\left\langle\mathbf{q}_{i}^{\prime}, \mathbf{a}_{i m}^{\prime} \right\ranglej=1∑L​⟨qi′​,aij′​⟩vj​=⟨qi′​,wk′​⟩j=1∑L​vj​+m∑​⟨qi′​,aim′​⟩

可以将时间复杂度降低为O(Ld2)O(Ld^2)O(Ld2),其中ddd为embedding维度。

时间复杂度

和线性Attention一致,依然为O(Ld2)O(Ld^2)O(Ld2)

训练以及loss

不变。

代码

实验以及适用场景

适用于所有场景,实验只测试了图像任务,但是效果一般。

细节

暂无。

简评

总体感觉新意尚可,但效果一般。

https://arxiv.org/abs/2102.07680
https://github.com/ExpectationMax/Translational-Equivariant-Performers